
Dk.S1 = {print_info_adv}
Dk.S2 = {msg_filters_show}
Dk.L = {parse_block_header, msg_filters_to_str,
 uint32_to_optstr}
Dk.R = {msg_filters_to_str, uint32_to_optstr}

Dj.S1 = {print_info_adv}
Dj.S2 = {msg_filters_show}
Dj.L.1 = {parse_block_header}
Dj.I.LR = {msg_filters_to_str, uint32_to_optstr}

Decker: Attack Surface Reduction
via On-demand Code Mapping

Problem

• Decker is a sound attack surface reduction technique for
applications that requires no training, user inputs, or
specifications.

• It achieves strong total gadget reductions (>70%) at low
overhead (~5% or less) across SPEC, coreutils, and nginx.

• It breaks ROP shell spawning chains in all experiments, and
there is strong evidence that useful JOP chains are
substantially hampered or impossible to build for both Linux
and Windows when using Decker.

Chris Porter, Sharjeel Khan, Santosh Pande

Decker

Runtime

Compiler pass

Results

Conclusion
Overview

Software is bloated with unused code.
• This unneeded code contains gadgets.
• Gadgets are code snippets that can be stitched together to

form gadget chains that execute malicious behavior.
• Although known CVEs are patched, future attacks can be built

over these chains.
How does one remove this unwanted code and reduce the attack
surface available to bad actors?

Breaking gadget chains

We propose a compiler-runtime hybrid technique.

Performance
SPEC CPU 2017: 5.2% avg overhead
GNU coreutils: negligible overhead
nginx: 2.3% avg transfer/sec degradation

Linking

ASPLOS ’23, March 25–29, 2023 Vancouver, Canada

Goal: Identify regions of code that execute together.
Instrument those points with function calls to the runtime,
which will map those decks (groups of functions) as
active only when needed. Define 4 types of decks:
1. Single – Only 1 function.
2. Loop – All functions within an interprocedurally outermost loop.
3. Reachable – All functions that are statically reachable by some loop.
4. Indirect – All functions that are statically reachable from some

runtime-resolved indirect call.

Piece-wise Chisel Razor BlankIt

Works on application ✔ ✔

Works on library ✔ ✔ ✔

Works on binary ✔ ✔

No user input needed ✔ ✔

No training needed ✔ ✔

Is sound ✔ ✔

Can debloat may-use code ✔

Benchmark (suite) Min Max Avg
SPEC CPU 2017 49.9 91.3 73.2
GNU coreutils 72.5 91.0 87.2
nginx 50.3 95.3 80.3Goal: Separate decks into disjoint sets so that

they can be placed into separate system pages.

• Without this change, system pages could
inadvertently include multiple functions that
are not part of the same deck.

• Mapping system pages with unneeded
functions would increase attack surface
unnecessarily.

• Provide a custom linker script to the linker;
the linker is unmodified.

Motivation
Current debloat techniques remove code from either:
• libraries (achieving strong attack surface reduction), or
• applications – but at the expenses of soundness.

There is no general technique that:
• works on the applications as a whole instead of libraries
• is sound, and
• can effectively debloat may-use code using dynamic contexts.

At build time, our LLVM pass will produce a modified object file
and custom linker script.

The modified program will leverage a runtime system to map
upcoming regions of code that are needed (and unmap code that
is unneeded).

Goal: Provide API and runtime support for mapping system
pages of a deck as RX/RO when needed/unneeded.

• Compiler’s start- and end-deck instrumentation
guarantees functions are available only when needed.

• Use statically known IDs to identify all functions
associated with a deck.
• Exception: Indirect calls; use the function pointer
 address in this case.

Total gadget reduction

SPEC CPU 2017 nginx

ROP:
• 9 benchmarks, including nginx, contain shell-spawning chain.
• We analyze every available page set over all inputs across all

applications with Ropper and find that Decker does not allow
the ROP chain under any set of dynamic decks.

• Analysis includes 6,453 unique dynamic deck sets (with
14,378 dynamic execution count).

JOP
• Both Linux and Windows studies on nginx.
• Decker consistently restricts useful gadgets from being used

together (e.g. mov cannot be used with pop gadgets).

