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Reducing code surface as a defense

❏ Modern applications are bloated with unused functionality
❏ Novel code reuse attacks leverage this bloated code
❏ Recent code reduction techniques are typically

❏ Sound but conservative (too much attack surface)
❏ Aggressive but unsound (can lead to crashes)

❏ In this work, we build a prototype called Decker that takes a 
constructive approach to attack surface reduction
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Image source: Wikipedia (deck)
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Code reuse attack components: ❌✗✗



Thank you!

❏ Please come to our talk for more details!
❏ Static compiler and dynamic runtime techniques
❏ Technique is sound
❏ nginx case study:

❏ Windows and Linux support
❏ Breaks real-world attacks
❏ Large attack surface reduction (~80%)
❏ Performant (~2% overhead)


