
Decker: Attack Surface Reduction

via On-Demand Code Mapping

Chris Porter, Sharjeel Khan, Santosh Pande

ASPLOS 2023

Lightning talk

Reducing code surface as a defense

❏ Modern applications are bloated with unused functionality
❏ Novel code reuse attacks leverage this bloated code
❏ Recent code reduction techniques are typically

❏ Sound but conservative (too much attack surface)
❏ Aggressive but unsound (can lead to crashes)

❏ In this work, we build a prototype called Decker that takes a
constructive approach to attack surface reduction

Example

A deck

Image source: Wikipedia (deck)

Example

main()

foo() bar()

Example

main()

foo() bar()

main()

 ...

 if(x)

 foo()

 bar()

foo()

 ...

bar()

 ...

Example

main()

foo() bar()

Program
counter

main()

 ...

 if(x)

 foo()

 bar()

foo()

 ...

bar()

 ...

Example

main()

foo() bar()

main()

 ...

 if(x)

 foo()

 bar()

foo()

 ...

bar()

 ...

Example

main()

foo() bar()

main()

 ...

 if(x)

 foo()

 bar()

foo()

 ...

bar()

 ...

Example

main()

foo() bar()

main()

 ...

 if(x)

 foo()

 bar()

foo()

 ...

bar()

 ...

Example

main()

foo() bar()

main()

 ...

 if(x)

 foo()

 bar()

foo()

 ...

bar()

 ...

Example

main()

foo() bar()

✔Code reuse attack components:

Example

main()

foo() bar()

Code reuse attack components: ❌✗✗

Thank you!

❏ Please come to our talk for more details!
❏ Static compiler and dynamic runtime techniques
❏ Technique is sound
❏ nginx case study:

❏ Windows and Linux support
❏ Breaks real-world attacks
❏ Large attack surface reduction (~80%)
❏ Performant (~2% overhead)

