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Introduction and Motivation
• In HPC environments, sharing of resources can badly affect performance if 

done wrong.
• No sharing leads to poor resource utilization of the systems and long 

queue wait times for users.
• State of the art resource managers in HPC environments currently 

estimate workload using three ways:
• Application Profiling
• History-based mechanism
• Application Domain Knowledge

• These approaches are agnostic to the fact that workloads are input-
dependant, and can fluctuate at different program phases.

• Current scheduling decisions suffer from detection and reaction lag, an 
application phase is already over by the time resources are allocated for it.
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Results

Conclusion
• Our compiler analysis and machine learning techniques can accurately 

predict the loop trip count (average accuracy of 79.9%), the loop timing 
(average accuracy of 79.13%), and the loop memory footprint (average 
error of 3%) 

• The Beacon scheduler shows an average throughput gain of 2.62x over a 
reactive scheduler called Merlin, and a gain of 1.9x over widely used 
Completely Fair Scheduler on 51 diverse benchmarks.

• Our framework based on dynamic loop characteristics can efficiently 
manage system resources to schedule processes in a HPC environment.

Beacon Compilation Component

Loop Categorization Analysis
• Normally Bounded – Normal Exit (NBNE)                 Loop trip count taken from loop bound
• Irreguarly Bounded – Normal Exit (IBNE)
• Normally Bounded – Mult Exit (NBME)                     Need to estimate trip count
• Irreguarly Bounded – Multi Exit (IBNE)

Loop Trip Count Estimation
• Compiler pass will backslice critical variables for loop termination to the pre-header of the loop
• The set of its backsliced critical variables will serve as the feature-set while the trip count will be the output 

label in the decision tree training that gets inserted into the code 
• When the number of training points are few, the trip count is the average plus one standard deviation.

Loop Timing Estimation
• Loop-nest timing is a function of the trip-counts of each loop in the loop nest.
• Any loop nest L with n inner-nested loops with individual trip-counts {N1,N2,…,Nn} can be written as:

TL=c0+c1x1+ …+cnxn where xi=∏i
k=1Nk

• The constants are generated through regression on training runs.

Loop Memory Footprint Estimation
• Polyhedral memory analysis gives an estimate of the loop memory footprint in the form of a mapping 

expression: [X] -> {Mf(X): 0 < X < k}, where X is the trip count of the loop nest.
• In non-affine loops or unanalyzable loops, we use the predicted trip count as the input for the closed-form 

formulae. 

Loop Reuse Behavior Estimation
• Compiler pass detects the static reuse distance (SRD), number of possible instructions between two accesses of 

the same memory location.
• Loops with high SRD are reuse loops meaning the memory entry must wait in the cache over the duration of 

entire loop before being reused
• Loops with small or constant SRD are streaming loops meaning the memory entry must wait in the cache over 

for a few (constant) iterations of the loop so it will most likely not be evicted.

Beacon Scheduler
• Scheduler optimizes the sharing of the Last-Level Cache (LLC) among 

scheduled processes by changing between the two modes
• Reuse Mode:

• A reuse beacon for a loop will lead to a check if all current 
processes fit in the cache. If not, the process will be put in 
waiting queue until a spots opens for it.

• A streaming beacon for a loop is suspended until no more 
reuse processes are active. 

• When no more reuse processes or 90% of processes are 
streaming, we switch to streaming mode.

• Streaming Mode:
• Streaming Mode executes as many streaming processes 

without exceeding memory bandwidth
• When we have many reuse processes in the waiting, we 

switch back to reuse mode.

We present Beacons Framework, an end-to-end compiler and 
scheduling framework, that estimates dynamic loop characteristics, 

encapsulates them in compiler-instrumented beacons in an 
application, and broadcasts them during application runtime, for 

proactive workload scheduling

Beacons Compilation Component workflow for efficient workload scheduling.
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Loop Trip Count Multi-Class Classification Models
(Supervised Machine Learning)

Decision 
Tree

To enhance the loop timing and loop 
memory footprint.

Loop Timing Multi-Variable Linear Regression
(Supervised Machine Learning)

Regression
Equation

To anticipate how long an application will 
require the loop cache memory

Loop Memory 
Footprint

Extension of Polyhedral
Memory Analysis

Closed-form
Formula

To determine the amount of cache 
memory required by the application’s 
loop nest

Loop Data Reuse 
Behavior
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Boolean 
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To guide how different applications can be 
efficiently co-located without thrashing
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Dynamic Trip Counts of Loops
• The sharing of resources requires the scheduler to determine dynamic 

cache interference between co-executing applications.
• Memory (Cache) footprint
• Duration of execution overlap

• These resources are determined by dynamic trip counts of loop.
• 55% loops are irregular or unanalyzable for trip counts (e.g. while loops, 

multi-exit, etc).
• Dynamic trip counts can be estimated through an ML-based model.

Example: 
// Model is hoisted here and evaluated at runtime
While (p1) { // Take backward slice of vars in p1
    …
    if (p2) break; // Take backward slice of vars in p2
}


