
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Introduction and Motivation
• In HPC environments, sharing of resources can badly affect performance if

done wrong.
• No sharing leads to poor resource utilization of the systems and long

queue wait times for users.
• State of the art resource managers in HPC environments currently

estimate workload using three ways:
• Application Profiling
• History-based mechanism
• Application Domain Knowledge

• These approaches are agnostic to the fact that workloads are input-
dependant, and can fluctuate at different program phases.

• Current scheduling decisions suffer from detection and reaction lag, an
application phase is already over by the time resources are allocated for it.

School of Computer Science, Georgia Institute of Technology

Girish Mururu*, Sharjeel Khan*, Bodhisatwa Chatterjee*, Chao Chen, Chris Porter, Ada Gavrilovska, Santosh Pande
Beacons: An End-to-End Compiler Framework for Predicting and Utilizing Dynamic Loop Characteristics

OOPSLA’ 23, October 25-27, 2023 (Cascais, Portugal)

Results

Conclusion
• Our compiler analysis and machine learning techniques can accurately

predict the loop trip count (average accuracy of 79.9%), the loop timing
(average accuracy of 79.13%), and the loop memory footprint (average
error of 3%)

• The Beacon scheduler shows an average throughput gain of 2.62x over a
reactive scheduler called Merlin, and a gain of 1.9x over widely used
Completely Fair Scheduler on 51 diverse benchmarks.

• Our framework based on dynamic loop characteristics can efficiently
manage system resources to schedule processes in a HPC environment.

Beacon Compilation Component

Loop Categorization Analysis
• Normally Bounded – Normal Exit (NBNE) Loop trip count taken from loop bound
• Irreguarly Bounded – Normal Exit (IBNE)
• Normally Bounded – Mult Exit (NBME) Need to estimate trip count
• Irreguarly Bounded – Multi Exit (IBNE)

Loop Trip Count Estimation
• Compiler pass will backslice critical variables for loop termination to the pre-header of the loop
• The set of its backsliced critical variables will serve as the feature-set while the trip count will be the output

label in the decision tree training that gets inserted into the code
• When the number of training points are few, the trip count is the average plus one standard deviation.

Loop Timing Estimation
• Loop-nest timing is a function of the trip-counts of each loop in the loop nest.
• Any loop nest L with n inner-nested loops with individual trip-counts {N1,N2,…,Nn} can be written as:

TL=c0+c1x1+ …+cnxn where xi=∏i
k=1Nk

• The constants are generated through regression on training runs.

Loop Memory Footprint Estimation
• Polyhedral memory analysis gives an estimate of the loop memory footprint in the form of a mapping

expression: [X] -> {Mf(X): 0 < X < k}, where X is the trip count of the loop nest.
• In non-affine loops or unanalyzable loops, we use the predicted trip count as the input for the closed-form

formulae.

Loop Reuse Behavior Estimation
• Compiler pass detects the static reuse distance (SRD), number of possible instructions between two accesses of

the same memory location.
• Loops with high SRD are reuse loops meaning the memory entry must wait in the cache over the duration of

entire loop before being reused
• Loops with small or constant SRD are streaming loops meaning the memory entry must wait in the cache over

for a few (constant) iterations of the loop so it will most likely not be evicted.

Beacon Scheduler
• Scheduler optimizes the sharing of the Last-Level Cache (LLC) among

scheduled processes by changing between the two modes
• Reuse Mode:

• A reuse beacon for a loop will lead to a check if all current
processes fit in the cache. If not, the process will be put in
waiting queue until a spots opens for it.

• A streaming beacon for a loop is suspended until no more
reuse processes are active.

• When no more reuse processes or 90% of processes are
streaming, we switch to streaming mode.

• Streaming Mode:
• Streaming Mode executes as many streaming processes

without exceeding memory bandwidth
• When we have many reuse processes in the waiting, we

switch back to reuse mode.

We present Beacons Framework, an end-to-end compiler and
scheduling framework, that estimates dynamic loop characteristics,

encapsulates them in compiler-instrumented beacons in an
application, and broadcasts them during application runtime, for

proactive workload scheduling

Beacons Compilation Component workflow for efficient workload scheduling.

Throughput Comparison of BES and Merlin normalized against CFS

Loop Timing Accuracy

Trip Count Accuracy

Loop
Characteristic

Estimation Technique Evaluation
Method

Utility in Workload Scheduling

Loop Trip Count Multi-Class Classification Models
(Supervised Machine Learning)

Decision
Tree

To enhance the loop timing and loop
memory footprint.

Loop Timing Multi-Variable Linear Regression
(Supervised Machine Learning)

Regression
Equation

To anticipate how long an application will
require the loop cache memory

Loop Memory
Footprint

Extension of Polyhedral
Memory Analysis

Closed-form
Formula

To determine the amount of cache
memory required by the application’s
loop nest

Loop Data Reuse
Behavior

Static Reuse Distance Analysis
(LLVM Loop Cache Analysis)

Boolean
Variable

To guide how different applications can be
efficiently co-located without thrashing

(* contributed equally to the paper)

Dynamic Trip Counts of Loops
• The sharing of resources requires the scheduler to determine dynamic

cache interference between co-executing applications.
• Memory (Cache) footprint
• Duration of execution overlap

• These resources are determined by dynamic trip counts of loop.
• 55% loops are irregular or unanalyzable for trip counts (e.g. while loops,

multi-exit, etc).
• Dynamic trip counts can be estimated through an ML-based model.

Example:
// Model is hoisted here and evaluated at runtime
While (p1) { // Take backward slice of vars in p1
 …
 if (p2) break; // Take backward slice of vars in p2
}

