
Non-Control Data Attacks
• Applications written in memory unsafe languages such as C++ suffer from

various memory vulnerabilities
• These vulnerabilities make the application susceptible to data-attacks,

which leads to following scenarios:
• Privilege Escalation
• Information Leakage
• Control-Flow Manipulation
• Unwanted Code Imports

• Non-Control Data Attacks occur when an adversary corrupts program
data that does not directly manipulate program control such as function
calls and return addresses

Exploiting Pointer Misdirection & Dualism
• The first contribution of this work is to present a new class of non-control

data attacks that are based on data pointer manipulation and exploiting
pointer arithmetic

• Programmers write optimized code that exploits the dualism between
program pointers and array pointers

• These attacks arise from two possible
 program vulnerabilities:

• Input channel variables gaining
 access to program pointer
• Variables participating in branch
 predicates can be tainted to
 flip the branch outcomes

Control-Flow Bending
• Control-Flow Bending is a popular instance of Non-Control Data attacks,

where an attacker can change the control-flow of program in such a way
that it follows a valid path in the program control-flow graph

• Such attacks typically involve flipping the branch outcomes to divert the
branch target to a code region of interest

• Such attacks are harder to defend against, since traditional techniques
are unable to distinguish the “correct” program execution path

• Frequent program branches and presence of program pointers
complicate the problem in terms of overhead and ability to analyze and
defend

School of Computer Science, Georgia Institute of Technology
Sharjeel Khan, Bodhisatwa Chatterjee, Santosh Pande

Pythia: Compiler-Guided Defense Against Non-Control Data Attacks

Pythia: Compiler Guided Defense Mechanism Results

• The set of branch sub-variables of a branch predicate statement represents every possible program variable that can affect
the outcome of the given branch

• For the computation of the branch sub-variable set, we leverage the backward program slices of branch predicate variables

• The set of variables that involve input channel, can be computed using their respective program forward-slices

Conclusion
• Pythia is a compiler-guided defense framework that combines traditional

compiler analysis with pointer authentication.

• Pythia’s performance-aware approach has an average overhead of
13.07% without compromising security guarantees.

• In addition, Pythia can secure 5.6% branches more than DFI and fully secure 3
applications.

Runtime overhead and Binary Size Comparison

IPC Degradation and Input Channel Distribution

Vulnerable Variables and ARM-PA instructions comparison

Pythia: Compiler-Guided Defense Mechanism Against Control Flow Bending Attacks

Branch Decomposition & Input Channel Construction

Stack Canaries & Heap Sectioning
• Pythia refines the set of vulnerable variables by first segregating statically and dynamically allocated program variables

• Pythia re-arranges the stack memory layout to allocate the vulnerable variable to the stack bottom (higher address).

• In the event of any overflow triggered by an adversary, the stack memory space of non-vulnerable variables will not be
affected.

• Pythia splits the program heap into an isolated section and shared section. The vulnerable program variables are allocated to
the secure portion of the heap, while others are on the shared portion.

• Pythia accomplishes heap sectioning by creating two variations of the memory allocation algorithm: one for isolated
allocation and shared allocation.

Distribution of Data Pointers and Additional Conditional Branches Secured

int *p;
int k, n, m;
int Arr[100]
p = Arr;
scanf(“%d”, &k)
…
m = n - 1;
*p = n + 1
if (m > n) {
//privileged user code
}

while strcmp(user, “admin”, 5)

continue //super user code

