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❏ Software continues to be susceptible to existing and new code 
reuse attacks

❏ Code reuse attacks are software attacks that leverage existing 
code in programs to perform some malicious action

❏ They’re commonly built today with gadgets
❏ Gadgets are code snippets that can be stitched together at 

runtime to form gadget chains that execute malicious behavior

Problem: Code reuse attacks



ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx], 
rax
ret

pop rax
ret

.text

ROP gadgets 
within the 
.text section
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ROP chain example

❏ Summary: gadget chaining works by leveraging multiple 
snippets across the existing code.



Debloating as defense

❏ We know that software is bloated with unused code
❏ The unneeded code contains gadgets which could be chained.
❏ Why not remove it?

❏ Debloating is a proposed defense against code reuse attacks
❏ Shortcomings with current approaches

❏ Too conservative, leaving too much code available to attackers
❏ Or they compromise soundness by specializing the application for 

only certain inputs or features, which can lead to crashes or 
incorrect output



Definition

sound transformation: a program transformation that does not 
change the semantics of a program. Program transformations that 
induce crashes or cause incorrect output are unsound.

Definition

may-use code: code that may be used by the program under 
certain inputs or execution conditions.

Soundness and may-use code



Properties of debloating frameworks

Piece-wise Chisel Razor BlankIt

Works on application ✔ ✔

Works on library ✔ ✔ ✔

Works on binary ✔ ✔

No user input needed ✔ ✔

No training needed ✔ ✔

Is sound ✔ ✔

Can debloat may-use code ✔



Properties of debloating frameworks

Piece-wise Chisel Razor BlankIt

Works on application ✔ ✔

Works on library ✔ ✔ ✔

Works on binary ✔ ✔

No user input needed ✔ ✔

No training needed ✔ ✔

Is sound ✔ ✔

Can debloat may-use code ✔



Properties of debloating frameworks

Piece-wise Chisel Razor BlankIt

Works on application ✔ ✔

Works on library ✔ ✔ ✔
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Motivation

To the best of our knowledge, there is no general technique 
today that:

1. Works on the applications as a whole instead of libraries
2. Is sound
3. Can effectively debloat may-use code using dynamic contexts
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Decker overview

❏ Decker is a constructive attack surface reduction technique 
❏ “Decks” are active sections of code that the program can 

effectively stand on. When a deck is unneeded, it can be 
removed.

❏ Map only code that is currently needed by a running program
❏ Disable all other code so accesses trigger a runtime exception
❏ Granularity: implement with system code pages (4KB)
❏ Compiler and runtime component to it



Threat model

❏ Focus is on attack surface reduction
❏ Assume the attacker can initiate and propagate the attack

❏ Decker’s main goal 
❏ Incrementally expose the executable surface of a program by 

following its interprocedural control flow.
❏ Breaks chains of gadgets, because all the gadgets that compose 

a chain are never dynamically exposed at the same time.

❏ Integrity of indirect call targets is out of scope (orthogonal 
schemes like CFI and CPI are designed specifically to tackle it)



Decker Example

Image source: Wikipedia (deck)



Decker Example

A deck

Image source: Wikipedia (deck)
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Example (Unprotected Program)

main()

foo() bar()

✔

Gadget chain components:

Gadget chain possible? 
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Gadget chain components:

Gadget chain possible? 
✗✗

✗
✗
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Program structure and performance

❏ Ideally, decking should be done at the entrances and exits of 
callsites
❏ But such instrumentation can cause substantial runtime overhead

❏ Loops in particular are problematic
❏ Instrumentation for functions invoked inside of loops will execute 

repeatedly and kill performance

❏ Leads us to 4 types of decks



Example

main()

A() B()

main()
  A(func_ptr)
  while {

B()
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Example

main()
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main()
  A(func_ptr)
  while {
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Let’s discuss the 4 deck types!



1. Single deck - Occurs in a non-loop region

main()

A() B()

main()
  A(func_ptr)
  while {

B()
  }
A(func_ptr)
  B()
  func_ptr()
B()
  C()

DECK-START

DECK-END

C()

map(RX, A)



2. Loop deck - Entrance to loops

main()

A() B()

main()
  A(func_ptr)
  while {

B()
  }
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map(RX, B, C)



3. Reachable deck - Enter loop region via non-loop

main()

A() B()

main()
  A(func_ptr)
  while {

B()
  }
A(func_ptr)
  B()
  func_ptr()
B()
  C()

DECK-START
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C()
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4. Indirect deck - Occurs at indirect calls

main()

A() B()

main()
  A(func_ptr)
  while {

B()
  }
A(func_ptr)
  B()
  func_ptr()
B()
  C()

DECK-START

DECK-END

C()

map(RX, ?)



Indirect deck

❏ Static function pointer analysis?
❏ Narrows possible targets but is an overapproximation
❏ Limits attack surface reduction

❏ Instead, resolve this at runtime by
❏ Passing function pointer to Decker runtime
❏ Mapping the appropriate pages

❏ We will violate the rule of thumb and instrument inside of 
loops!
❏ Caching optimization needed



Linker

❏ Problem: Functions in one deck can occupy the same code page 
as functions in another deck, and we do not want to 
inadvertently include gadgets from other functions when we 
map a code page as active.

❏ Solution: Separate deck sets into disjoint sets (separate pages) 
and use a linker script to enforce it.
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Evaluation goals

❏ What is the performance slowdown due to Decker?
❏ What is the gadget reduction for applications that use Decker?
❏ Can Decker

❏ break real gadget chains in the benchmarks and real-world 
applications to be able to stop gadget-based attacks?

❏ render JOP gadgets ineffective in practical scenarios, including 
Windows?



Evaluation summary

❏ Performance
❏ ~5% average overhead for SPEC 2017, GNU coreutils, and nginx

❏ Security
❏ 70-87% total gadget reduction
❏ Equals or (in many cases) improves on comparable prior work
❏ Achieves this without compromising soundness



Evaluation summary

❏ Gadget chain-breaking
❏ An unexplored metric that we introduce and report for Decker
❏ Decker fully breaks a popular syscall ROP chain in all cases
❏ Decker removes functionality which is critical for JOP chains to be 

successful from nginx in both Linux and Windows



Evaluation details

❏ Please see paper for detailed results and analysis!



Conclusion

❏ Decker
❏ an attack surface reduction technique for applications
❏ is sound and enables may-use code on-demand
❏ requires zero training, user inputs, or specifications

❏ Acceptable performance slowdowns and strong total gadget 
reductions across two benchmark suites and nginx

❏ Gadget chain-breaking study
❏ Breaks automatically generated syscall ROP chains
❏ Strong evidence that useful JOP chains are substantially hampered 

or impossible to build for both Linux and Windows



Thank you!

❏ Check out our artifact!
❏ https://zenodo.org/record/7319957 

❏ Link is available in the paper, too

❏ Questions?

https://zenodo.org/record/7319957

