
Decker: Attack Surface Reduction

via On-Demand Code Mapping

Chris Porter, Sharjeel Khan, Santosh Pande

ASPLOS 2023

❏ Software continues to be susceptible to existing and new code
reuse attacks

❏ Code reuse attacks are software attacks that leverage existing
code in programs to perform some malicious action

❏ They’re commonly built today with gadgets
❏ Gadgets are code snippets that can be stitched together at

runtime to form gadget chains that execute malicious behavior

Problem: Code reuse attacks

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

ROP gadgets
within the
.text section

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

0x55720a
0x2a
0x5001f9
0x800000
0x52e1fe

Stack payload

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

0x55720a
0x2a
0x5001f9
0x800000
0x52e1fe

Stack payload

gadget 1 address -> pop rax; ret;

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

0x55720a
0x2a
0x5001f9
0x800000
0x52e1fe

Stack payload

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

0x55720a
0x2a
0x5001f9
0x800000
0x52e1fe

Stack payload

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

0x55720a
0x2a
0x5001f9
0x800000
0x52e1fe

Stack payload

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

0x55720a
0x2a
0x5001f9
0x800000
0x52e1fe

Stack payload

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

0x55720a
0x2a
0x5001f9
0x800000
0x52e1fe

Stack payload

ROP chain example

0x500000
...

0x5001f9
...

0x52e1fe
...

0x55720a
...

0x600000

pop rcx
ret

mov qword ptr [rcx],
rax
ret

pop rax
ret

.text

0x55720a
0x2a
0x5001f9
0x800000
0x52e1fe

Stack payload

ROP chain example

❏ Summary: gadget chaining works by leveraging multiple
snippets across the existing code.

Debloating as defense

❏ We know that software is bloated with unused code
❏ The unneeded code contains gadgets which could be chained.
❏ Why not remove it?

❏ Debloating is a proposed defense against code reuse attacks
❏ Shortcomings with current approaches

❏ Too conservative, leaving too much code available to attackers
❏ Or they compromise soundness by specializing the application for

only certain inputs or features, which can lead to crashes or
incorrect output

Definition

sound transformation: a program transformation that does not
change the semantics of a program. Program transformations that
induce crashes or cause incorrect output are unsound.

Definition

may-use code: code that may be used by the program under
certain inputs or execution conditions.

Soundness and may-use code

Properties of debloating frameworks

Piece-wise Chisel Razor BlankIt

Works on application ✔ ✔

Works on library ✔ ✔ ✔

Works on binary ✔ ✔

No user input needed ✔ ✔

No training needed ✔ ✔

Is sound ✔ ✔

Can debloat may-use code ✔

Properties of debloating frameworks

Piece-wise Chisel Razor BlankIt

Works on application ✔ ✔

Works on library ✔ ✔ ✔

Works on binary ✔ ✔

No user input needed ✔ ✔

No training needed ✔ ✔

Is sound ✔ ✔

Can debloat may-use code ✔

Properties of debloating frameworks

Piece-wise Chisel Razor BlankIt

Works on application ✔ ✔

Works on library ✔ ✔ ✔

Works on binary ✔ ✔

No user input needed ✔ ✔

No training needed ✔ ✔

Is sound ✔ ✔

Can debloat may-use code ✔

✗

Motivation

To the best of our knowledge, there is no general technique
today that:

1. Works on the applications as a whole instead of libraries
2. Is sound
3. Can effectively debloat may-use code using dynamic contexts

Outline

1. Introduction
2. Overview
3. Decking
4. Evaluation
5. Conclusion

Decker overview

❏ Decker is a constructive attack surface reduction technique
❏ “Decks” are active sections of code that the program can

effectively stand on. When a deck is unneeded, it can be
removed.

❏ Map only code that is currently needed by a running program
❏ Disable all other code so accesses trigger a runtime exception
❏ Granularity: implement with system code pages (4KB)
❏ Compiler and runtime component to it

Threat model

❏ Focus is on attack surface reduction
❏ Assume the attacker can initiate and propagate the attack

❏ Decker’s main goal
❏ Incrementally expose the executable surface of a program by

following its interprocedural control flow.
❏ Breaks chains of gadgets, because all the gadgets that compose

a chain are never dynamically exposed at the same time.

❏ Integrity of indirect call targets is out of scope (orthogonal
schemes like CFI and CPI are designed specifically to tackle it)

Decker Example

Image source: Wikipedia (deck)

Decker Example

A deck

Image source: Wikipedia (deck)

Decker Example

main()

foo() bar()

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

Program
counter

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Decker Example

main()

foo() bar()

main()
 ...
 if(x)
 foo()
 bar()

foo()
 ...

bar()
 ...

Example (Unprotected Program)

main()

foo() bar()

✔

Gadget chain components:

Gadget chain possible?

Example (Decker-Protected Program)

main()

foo() bar()

❌
Gadget chain components:

Gadget chain possible?
✗✗

✗
✗

Example (Decker-Protected Program)

main()

foo() bar()

❌
Gadget chain components:

Gadget chain possible?
✗

✗

Example (Decker-Protected Program)

main()

foo() bar()

❌
Gadget chain components:

Gadget chain possible?
✗

✗

Outline

1. Introduction
2. Overview
3. Decking
4. Evaluation
5. Conclusion

Program structure and performance

❏ Ideally, decking should be done at the entrances and exits of
callsites
❏ But such instrumentation can cause substantial runtime overhead

❏ Loops in particular are problematic
❏ Instrumentation for functions invoked inside of loops will execute

repeatedly and kill performance

❏ Leads us to 4 types of decks

Example

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

C()

Example

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

C()

Example

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

C()

Example

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

C()

Example

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

C()

Let’s discuss the 4 deck types!

1. Single deck - Occurs in a non-loop region

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

DECK-START

DECK-END

C()

map(RX, A)

2. Loop deck - Entrance to loops

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

DECK-START

DECK-END

C()

map(RX, B, C)

3. Reachable deck - Enter loop region via non-loop

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

DECK-START

DECK-END

C()

map(RX, B, C)

4. Indirect deck - Occurs at indirect calls

main()

A() B()

main()
 A(func_ptr)
 while {

B()
 }
A(func_ptr)
 B()
 func_ptr()
B()
 C()

DECK-START

DECK-END

C()

map(RX, ?)

Indirect deck

❏ Static function pointer analysis?
❏ Narrows possible targets but is an overapproximation
❏ Limits attack surface reduction

❏ Instead, resolve this at runtime by
❏ Passing function pointer to Decker runtime
❏ Mapping the appropriate pages

❏ We will violate the rule of thumb and instrument inside of
loops!
❏ Caching optimization needed

Linker

❏ Problem: Functions in one deck can occupy the same code page
as functions in another deck, and we do not want to
inadvertently include gadgets from other functions when we
map a code page as active.

❏ Solution: Separate deck sets into disjoint sets (separate pages)
and use a linker script to enforce it.

Outline

1. Introduction
2. Overview
3. Decking
4. Evaluation
5. Conclusion

Evaluation goals

❏ What is the performance slowdown due to Decker?
❏ What is the gadget reduction for applications that use Decker?
❏ Can Decker

❏ break real gadget chains in the benchmarks and real-world
applications to be able to stop gadget-based attacks?

❏ render JOP gadgets ineffective in practical scenarios, including
Windows?

Evaluation summary

❏ Performance
❏ ~5% average overhead for SPEC 2017, GNU coreutils, and nginx

❏ Security
❏ 70-87% total gadget reduction
❏ Equals or (in many cases) improves on comparable prior work
❏ Achieves this without compromising soundness

Evaluation summary

❏ Gadget chain-breaking
❏ An unexplored metric that we introduce and report for Decker
❏ Decker fully breaks a popular syscall ROP chain in all cases
❏ Decker removes functionality which is critical for JOP chains to be

successful from nginx in both Linux and Windows

Evaluation details

❏ Please see paper for detailed results and analysis!

Conclusion

❏ Decker
❏ an attack surface reduction technique for applications
❏ is sound and enables may-use code on-demand
❏ requires zero training, user inputs, or specifications

❏ Acceptable performance slowdowns and strong total gadget
reductions across two benchmark suites and nginx

❏ Gadget chain-breaking study
❏ Breaks automatically generated syscall ROP chains
❏ Strong evidence that useful JOP chains are substantially hampered

or impossible to build for both Linux and Windows

Thank you!

❏ Check out our artifact!
❏ https://zenodo.org/record/7319957

❏ Link is available in the paper, too

❏ Questions?

https://zenodo.org/record/7319957

