
Pythia: Compiler-Guided Defense

Against Non-Control Data Attacks

Sharjeel Khan Bodhi Chatterjee Santosh Pande

Software Memory Vulnerabilities = Non-Control Data Attacks

Software Memory Vulnerabilities

⏩ Applications written in memory unsafe languages (C/C++) are vulnerable to data-attacks

Implications of Data Attacks

⏩ Control-flow Bending involves diverting a program branch’s target into alternative paths

Privilege Escalation

Information Leakage

Control-Flow Manipulation

Unwanted Code Imports

Arbitrary Code Execution

while strcmp(user, “admin”, 5)

continue //super user code

⏩ Challenging to defend against because of prevalence of program branches & program pointers

Flipping Branch Predicate by String Overflow

Conditional Branches & Program Pointers = Scalability & Analyzability

❏ Prevalence of conditional program branches impacts
the scalability of this problem
❏ Over 55% of terminator IR instructions in SPEC 2017 are

conditionals (~700,000)
❏ Over 56% of Nginx are conditionals (~16,000)

❏ Presence of program pointers affecting branches leads
to un-analyzability
❏ Out of 900,000 pointer instructions in SPEC 2017, more

than 200,000 affect conditionals branches

Pointer Positioning Attack: Data Pointer Corruption

int *p ;
int k, m, n ;
int Arr [100] ;
p = Arr ;
scanf (" % d " , & k) ;
...
m = n - 1;
*p = n + 1;
if (m > n) {
 // privileged execution
}

p stores the base address of Arr

p points to m by overwriting pointer
value and this alias sets m = n +1

Pointer p can be corrupted by k due to the overflow (memory vulnerability)

Real-World Control-Flow Bending: Privilege Escalation

void Access (char pwd [20]) {
 char str [SIZE] , user [SIZE];
 char someinput [DIFF_SIZE];
 ...
 verify_user (user , pwd) ;
 if (strncmp (user , " admin " ,5)) {
 // super user code
 ...
 } else {
 // normal user code
 ...
 }

 strcpy (str , someinput) ;

 if (strncmp (user , " admin " ,5)) {
 // super user code
 ...
 } else {
 // normal user code
 ...
 }
}

Input string declaration

First string comparison after verifying
username with password

Copying str into someinput could lead to an overflow

Second string comparison could be manipulated to
be True, via buffer-overflow causing super user
privilege

Existing State-of-the-Arts: High Overheads, Generalizability & Compatibility Issues

Defenses Against Non-Control Data Attacks

Data-Flow Integrity (DFI) Address Randomization Memory Safety

✅ Handles Control-Flow Bending by
checking reachability constraints

❌ High Overheads (40%-100%) resulting
from excessive runtime checking

❌ Incompatibility with C++ codebases

❌ Inability to handle program pointer
positioning attacks

✅ Performs address space re-layout
to prevent control-flow bending

❌ High Runtime Overheads
(20%-55%) arising from performing
randomization at runtime

❌ Specific to program stack/heap
only

✅ Introduces non-trivial language
extensions to prevent spatial & temporal
memory violations

❌ Significant runtime overheads due to
runtime pointer checks

❌ Issues with C++ codebases

ARM Pointer Authentication (PA)

❏ Specialized hardware mechanism that ensures the integrity of data and code pointers
associated with the program

❏ Not all bits are required to define the address space - top bits are used as Pointer
Authentication Code (PAC)

❏ In 64-bit architectures, the pointer address space is less than 40-bits so it leaves PAC with 24
bits (1 in 16 million chance)

❏ Each encryption (PACD*) and authentication (AUTD*) instruction takes around ~2ns

Complete Pointer Authentication (CPA) for Branches

CPA

Detecting Program Vulnerabilities

CPA leverages
ARM-PA’s mechanism

which uses HW support
for authentication

Compiler Analysis &
Backslicing

Secure All Vulnerable VariablesARM-PA Encryption

This is a baseline scheme where all possible program vulnerabilities are secured with
ARM-PA to prevent overflows

Detecting Program Vulnerabilities: Variable “Backslicing”

❏ For a given branch, traverse the variables’ Use-Def chains to detect all variables
influencing that branch

Use

Def

e f

a,b c,d

g

a,b

❏ Program pointers and their possible aliases are also secured

❏ To secure variables:
❏ Authenticate (decrypt) pointers variables before loads
❏ Sign (encrypt) pointers in the set before stores

Example: Real-World Control-Flow Bending with CPA

Branch Backslice Variables: user

Branch Backslice Variables: user

void Access (char pwd [20]) {
 char str [SIZE] , user [SIZE];
 char someinput [DIFF_SIZE];

 verify_user (user , pwd) ;

 if (strncmp (user , " admin " ,5)) {
 // super user code
 ...
 } else {
 // normal user code
 ...
 }

 strcpy (str , someinput) ;

 if (strncmp (user , " admin " ,5)) {
 // super user code
 ...
 } else {
 // normal user code
 ...
 }
}

Authenticate pointer to user

Encrypt pointer to user

Authenticate pointer to user

 llvm.pythia.sign(user);

llvm.pythia.auth(user);

llvm.pythia.auth(user);

Our experiments have shown that following
this naive scheme incurs upto 48% runtime

overheads, and bloats the binary size by 22%

Pythia: Performance-Aware Defense Approach for Control-Flow
Bending

Pythia

Detecting Program Vulnerabilities

Stack Canaries for Static Variables

Heap Relocation for Dynamic Variables

Compiler Analysis &
Backslicing

Memory Space Layout
Transformation

Input Channels: Source for Attackers to Trigger Overflows

❏ Most overflow-based attacks are triggered via program’s input-channels

Input
Channels

Move/Copy
(memcpy,

strcpy)

Scan (scanf,
sscanf)

Map
(mmap)

Print
(printf)

Put (puts,
fputs)

Get (get,
fgets)❏ Backslicing input-channel function

variables (rather than branch variables),
refines the set of vulnerable variables

❏ Attackers manipulate the arguments of
input-channel functions to trigger buffer
overflows

Memory Layout Transformation: Stack Canaries

❏ Stack variables used in ICs are moved to the top of function frame
❏ Canaries are added in between each vulnerable stack variables

Affected by
input channels

Relocated &
fitted with
canaries

❏ Before IC for a stack variable, the canary gets re-encrypted in case of a long call-chains
❏ After IC for stack variable, the canary gets authenticated to check for overflows

Memory Layout Transformation: Heap Relocation

❏ Vulnerable heap variable are relocated to an isolated part of the heap memory

Affected by
input channels

❏ This is achieved via Pythia’s custom memory allocation (e.g. malloc -> smalloc)
❏ Pythia’s custom memory allocation reserves a big chunk of heap in the beginning and allocates

based on heap allocation function calls
❏ These vulnerable heap variables and its uses are encrypted/authenticated with ARM PA on

every store/load respectively

Authenticate canary so there was no overflow

Real-World Example: Control-Flow Bending with Pythia

void Access (char pwd [20]) {
 int canary = lib_random();
 char someinput [DIFF_SIZE];
 char str [SIZE] , user [SIZE];

 verify_user (user , pwd) ;
 if (strncmp (user , " admin " ,5)) {
 // super user code
 ...
 } else {
 // normal user code
 ...
 }

 canary = lib_random();
 llvm.pythia.sign(canary);
 strcpy (str , someinput) ;

 ...
}

someinput got moved to top

Input Channel with someinput as target

 llvm.pythia.sign(canary);

Canary got created

Encrypt canary value

llvm.pythia.auth(canary);

llvm.pythia.auth(canary);

Encrypt canary value

Authenticate canary then re-randomize it

Evaluation

❏ How effective is the conservative scheme in defending against non-control data attacks,
and what are its runtime overheads?

❏ How secure is Pythia’s performance-aware approach involving stack canaries and heap
sectioning approach against non-control data attacks?

❏ Does it manage to reduce the runtime overheads and ARM-PA instructions compared to
the conservative scheme?

❏ How does Pythia compare to DFI in terms of securing vulnerable branches in
applications that can be manipulated through the input channels?

Summary of Results

❏ Performance Results:
❏ Average Overhead: 47.88% (CPA) vs 13.07% (Pythia)
❏ Average Binary Increase: 21.56% (CPA) vs 10.37% (Pythia)

❏ Security Results:
❏ 25326 ICs with 31.5% prints and 65.9% move/copys
❏ Pythia decreased PAs by 4.25x
❏ Branch protection: 92.2% (Pythia) vs 86.6% (DFI)
❏ 100% Branch Protection: 3 (Pythia) vs 1 (DFI)
❏ Works on well-known real-life attacks such as ProFTPd

Security Results (Input Channels)

~25000 ICs with 31.5% prints and 65.9% move/copys

Security Results (Branch Protection)

Branch protection: 92.2% (Pythia) vs 86.6% (DFI)
100% Branch Protection: 3 (Pythia) vs 1 (DFI)

Performance Results (Binary Size)

Average Binary Increase: 21.56% (CPA) vs 10.37% (Pythia)

Performance Results (Overheads)

Average Overhead: 47.88% (CPA) vs 13.07% (Pythia)
Pythia decreased PAs by 4.25x

Conclusion

❏ Pythia:
❏ Compiler-guided defense framework with pointer authentication to tackle

Non-Control Data Attacks
❏ Utilizes hardware components already available in ARM chips
❏ Effective on pointer-intensive applications and C++ codes
❏ Works on well-known real-life attacks such as ProFTPd

❏ Pythia’s average overhead is 13.07% compared to Complete Pointer Authentication’s
average overhead of 47.88%

❏ Pythia can secure 5.6% (~33000) more branches than DFI in SPEC 2017 and Nginx and
fully secure 3 applications

Thank You

❏ Questions?

