
Pythia: Compiler-Guided Defense 

Against Non-Control Data Attacks

Sharjeel Khan     Bodhi Chatterjee     Santosh Pande



Software Memory Vulnerabilities = Non-Control Data Attacks 

Software Memory Vulnerabilities

⏩ Applications written in memory unsafe languages (C/C++) are vulnerable to data-attacks

Implications of Data Attacks

⏩ Control-flow Bending involves diverting a program branch’s target into alternative paths

Privilege Escalation

Information Leakage

Control-Flow Manipulation

Unwanted Code Imports

Arbitrary Code Execution

while strcmp(user, “admin”, 5)

continue //super user code

⏩ Challenging to defend against because of prevalence of program branches & program pointers

Flipping Branch Predicate by String Overflow



Conditional Branches & Program Pointers = Scalability & Analyzability

❏ Prevalence of conditional program branches impacts 
the scalability of this problem
❏ Over 55% of terminator IR instructions in SPEC 2017 are 

conditionals (~700,000)
❏ Over 56% of Nginx are conditionals (~16,000)

❏ Presence of program pointers affecting branches leads 
to un-analyzability 
❏ Out of 900,000 pointer instructions in SPEC 2017, more 

than 200,000 affect conditionals branches



Pointer Positioning Attack: Data Pointer Corruption

int *p ;
int k, m, n ;
int Arr [100] ;
p = Arr ;
scanf ( " % d " , & k ) ;
...
m = n - 1;
*p = n + 1;
if ( m > n ) {
    // privileged execution
}

p stores the base address of Arr

p points to m by overwriting pointer 
value and this alias sets m = n +1

Pointer p can be corrupted by k due to the overflow (memory vulnerability)



Real-World Control-Flow Bending: Privilege Escalation

void Access ( char pwd [20]) {
    char str [ SIZE ] , user [ SIZE ];
    char someinput  [ DIFF_SIZE ];
      ...
    verify_user ( user , pwd ) ;
    if ( strncmp ( user , " admin " ,5) ) {
        // super user code
        ...
    } else {
        // normal user code
         ...
    }

    strcpy ( str , someinput ) ;

    if ( strncmp ( user , " admin " ,5) ) {
        // super user code
        ...
    } else {
        // normal user code
        ...
    }
}

Input string declaration

First string comparison after verifying 
username with password

Copying str into someinput could lead to an overflow 

Second string comparison could be manipulated to 
be True, via buffer-overflow causing super user 
privilege



Existing State-of-the-Arts: High Overheads, Generalizability & Compatibility Issues

Defenses Against Non-Control Data Attacks 

Data-Flow Integrity (DFI) Address Randomization Memory Safety

✅  Handles Control-Flow Bending by 
checking reachability constraints

❌ High Overheads (40%-100%) resulting 
from excessive runtime checking 

❌ Incompatibility with C++ codebases

❌ Inability to handle program pointer 
positioning attacks

✅ Performs address space re-layout 
to prevent control-flow bending   

❌ High Runtime Overheads 
(20%-55%) arising from performing 
randomization at runtime 

❌ Specific to program stack/heap 
only

✅ Introduces non-trivial language 
extensions to prevent spatial & temporal 
memory violations

❌  Significant runtime overheads due to 
runtime pointer checks

❌ Issues with C++ codebases



ARM Pointer Authentication (PA)

❏ Specialized hardware mechanism that ensures the integrity of data and code pointers 
associated with the program

❏ Not all bits are required to define the address space - top bits are used as Pointer 
Authentication Code (PAC)

❏ In 64-bit architectures, the pointer address space is less than 40-bits so it leaves PAC with 24 
bits (1 in 16 million chance)

❏ Each encryption (PACD*) and authentication (AUTD*) instruction takes around ~2ns



Complete Pointer Authentication (CPA) for Branches

CPA

Detecting Program Vulnerabilities

CPA leverages 
ARM-PA’s mechanism 

which uses HW support 
for authentication

Compiler Analysis & 
Backslicing

Secure All Vulnerable VariablesARM-PA Encryption

This is a baseline scheme where all possible program vulnerabilities are secured with 
ARM-PA to prevent overflows



Detecting Program Vulnerabilities: Variable “Backslicing”

❏ For a given branch, traverse the variables’ Use-Def chains to detect all variables 
influencing that branch 
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Def

e f

a,b c,d

g

a,b

❏ Program pointers and their possible aliases are also secured    

❏ To secure variables: 
❏ Authenticate (decrypt) pointers variables before loads
❏ Sign (encrypt) pointers in the set before stores



Example: Real-World Control-Flow Bending with CPA

Branch Backslice Variables: user

Branch Backslice Variables: user

void Access ( char pwd [20]) {
    char str [ SIZE ] , user [ SIZE ];
    char someinput  [ DIFF_SIZE ];
    

    verify_user ( user , pwd ) ;
    
    if ( strncmp ( user , " admin " ,5) ) {
        // super user code
        ...
    } else {
        // normal user code
         ...
    }
      

    strcpy ( str , someinput ) ;
    
    if ( strncmp ( user , " admin " ,5) ) {
        // super user code
        ...
    } else {
        // normal user code
        ...
    }
}

Authenticate pointer to user

Encrypt pointer to user

Authenticate pointer to user

 llvm.pythia.sign(user);

llvm.pythia.auth(user);

llvm.pythia.auth(user);

Our experiments have shown that following 
this naive scheme incurs upto 48% runtime 

overheads, and bloats the binary size by 22% 



Pythia: Performance-Aware Defense Approach for Control-Flow 
Bending

Pythia

Detecting Program Vulnerabilities

Stack Canaries for Static Variables

Heap Relocation for Dynamic Variables

Compiler Analysis & 
Backslicing

Memory Space Layout 
Transformation



Input Channels: Source for Attackers to Trigger Overflows

❏ Most overflow-based attacks are triggered via program’s input-channels

Input 
Channels

Move/Copy 
(memcpy, 

strcpy)

Scan (scanf, 
sscanf)

Map 
(mmap)

Print 
(printf)

Put (puts, 
fputs)

Get (get, 
fgets)❏ Backslicing input-channel function 

variables (rather than branch variables), 
refines the set of vulnerable variables 

❏ Attackers manipulate the arguments of 
input-channel functions to trigger buffer 
overflows



Memory Layout Transformation: Stack Canaries 

❏ Stack variables used in ICs are moved to the top of function frame
❏ Canaries are added in between each vulnerable stack variables

Affected by 
input channels

Relocated & 
fitted with 
canaries

❏ Before IC for a stack variable, the canary gets re-encrypted in case of a long call-chains
❏ After IC for stack variable, the canary gets authenticated to check for overflows



Memory Layout Transformation: Heap Relocation

❏ Vulnerable heap variable are relocated to an isolated part of the heap memory

Affected by 
input channels

❏ This is achieved via Pythia’s custom memory allocation (e.g. malloc -> smalloc)
❏ Pythia’s custom memory allocation reserves a big chunk of heap in the beginning and allocates 

based on heap allocation function calls
❏ These vulnerable heap variables and its uses are encrypted/authenticated with ARM PA on 

every store/load respectively



Authenticate canary so there was no overflow

Real-World Example: Control-Flow Bending with Pythia

void Access ( char pwd [20]) {
     int canary = lib_random();
    char someinput  [ DIFF_SIZE ];
    char str [ SIZE ] , user [ SIZE ];
    

    verify_user ( user , pwd ) ;
    if ( strncmp ( user , " admin " ,5) ) {
        // super user code
        ...
    } else {
        // normal user code
         ...
    }
      

      canary = lib_random();
    llvm.pythia.sign(canary);
    strcpy ( str , someinput ) ;
    
    ...
}

someinput got moved to top

Input Channel with someinput as target

 llvm.pythia.sign(canary);

Canary got created

Encrypt canary value

llvm.pythia.auth(canary);

llvm.pythia.auth(canary);

Encrypt canary value 

Authenticate canary then re-randomize it



Evaluation

❏ How effective is the conservative scheme in defending against non-control data attacks, 
and what are its runtime overheads?

❏ How secure is Pythia’s performance-aware approach involving stack canaries and heap 
sectioning approach against non-control data attacks?

❏ Does it manage to reduce the runtime overheads and ARM-PA instructions compared to 
the conservative scheme?

❏ How does Pythia compare to DFI in terms of securing vulnerable branches in 
applications that can be manipulated through the input channels?



Summary of Results

❏ Performance Results:
❏ Average Overhead: 47.88% (CPA) vs 13.07% (Pythia)
❏ Average Binary Increase: 21.56% (CPA) vs 10.37% (Pythia)

❏ Security Results:
❏ 25326 ICs with 31.5% prints and 65.9% move/copys
❏ Pythia decreased PAs by 4.25x
❏ Branch protection: 92.2% (Pythia) vs 86.6% (DFI)
❏ 100% Branch Protection: 3 (Pythia) vs 1 (DFI)
❏ Works on well-known real-life attacks such as ProFTPd



Security Results (Input Channels)

~25000 ICs with 31.5% prints and 65.9% move/copys



Security Results (Branch Protection)

Branch protection: 92.2% (Pythia) vs 86.6% (DFI)
100% Branch Protection: 3 (Pythia) vs 1 (DFI)



Performance Results (Binary Size)

Average Binary Increase: 21.56% (CPA) vs 10.37% (Pythia)



Performance Results (Overheads)

Average Overhead: 47.88% (CPA) vs 13.07% (Pythia)
Pythia decreased PAs by 4.25x



Conclusion

❏ Pythia:
❏ Compiler-guided defense framework with pointer authentication to tackle 

Non-Control Data Attacks
❏ Utilizes hardware components already available in ARM chips
❏ Effective on pointer-intensive applications and C++ codes
❏ Works on well-known real-life attacks such as ProFTPd 

❏ Pythia’s average overhead is 13.07% compared to Complete Pointer Authentication’s 
average overhead of 47.88%

❏ Pythia can secure 5.6% (~33000) more branches than DFI in SPEC 2017 and Nginx and 
fully secure 3 applications



Thank You

❏ Questions?


