
BEACONS: An end-to-end Compiler
Framework for Predicting and Utilizing

Dynamic Loop Characteristics

Girish Mururu*, Sharjeel Khan*, Bodhi Chatterjee*, Chao Chen,

Chris Porter, Ada Gavrilovska, Santosh Pande

*equal contribution

Main Contributions

Estimation of an application’s
dynamic resource requirements

just-in-time, in terms of loop
characteristics

Novel loop analysis which divides
loops into distinct classes and

devises specific mechanisms to
estimate their dynamic trip

counts.

Throughput-oriented
scheduling mechanism that

aggregates the dynamic
information to allocate

resources to the processes

Compiler-Directed
Predictive Analysis

Loop Trip Count
Analysis

Proactive
Workload Scheduling

We present Beacons Framework, an end-to-end compiler and scheduling framework, that estimates
dynamic loop characteristics, encapsulates them in compiler-instrumented beacons in an application,

and broadcasts them during application runtime, for proactive workload scheduling

Resource Allocation in High-Performance Computing (HPC)
Clusters

Workload Profilling
History-based
Mechanism

Application Domain
Knowledge

Application Schedulers

These approaches are agnostic to the fact that workloads are
input-dependent and can fluctuate at different program phases.

Detection and Reaction lag

The goal is to minimize the overlap between resource-heavy phases of applications, and maximize
the concurrency in non-resource heavy phases dynamically

Application Resource Requirement = Dynamic Loop Characteristics

Loop Trip Count

Loop Timing
Memory Footprint

Analysis

Data Reuse
Behavior

Machine
Learning
Classifier

Static Reuse
Distance

Polyhedral
Model

Machine
Learning

Regression

Dynamic Resource Requirements are estimated
just-in-time in terms of loop characteristics

Compiler Directed Predictive
Analysis

The characteristics are statically computed in
lightweight manner through closed-form
formulae and machine learning models

The characteristics are encapsulated in "Beacons" (specialized library markers), and statically instrumented in the
application code

At runtime, these models are instantiated and
the information is broadcasted to the scheduler

for proactive workload scheduling

Beacons Framework: Compile-time & Run-time Cooperative
Scheduling

• Beacons Compilation Component consists of multiple compiler passes that estimate various loop characteristics

• The source code is statically instrumented with prediction models, which are instantiated at the runtime for information broadcast

• This framework is also responsible for 'hoisting' the beacon calls to the outer-most loop preheaders

• The information broadcast is obtained by designing a commnunication library that uses shared memory to relay the
loop information

• Program variables that dictate the loop iteration conditions are analyzed, and are decomposed into critical variables by traversing
their def-use chains backwards to the loop pre-header.

Tackling Irregular Loops: "Backslicing" Critical Variables

Bound and Branch Predicate Variables

Critical Backsliced Variables

• Loops Nests are categorized into different classes based on their bounds and exit conditions, which helps in determining
critical variable sets

e

Multi-Exit Loop Nest

a, b

f

c, d

g

a, b

Loop nests with complex control flows and indeterminate
loop bounds involving structure fields, aliased variables and function calls can

be tackled in this manner

Use

Def

Loop Categorization Scheme
• To determine the set of critical variables, loop nests are divided into four distinct categories:

NBNE

Normally-Bounded Normal Exit Irregularly-Bounded Normal Exit Normally-Bounded Multi Exit

IBNE NBME IBME

Irregularly-Bounded Multi Exit

• Trip-Count could be statically
estimated

• Trip-Count cannot be statically
estimated

• Trip-Count cannot be statically
estimated

• Trip-Count cannot be statically
estimated

• Critical Variables = ϕ • Critical Variables = loop-bounds • Critical Variables = branch predicates • Critical Variables = branch
predicates U loop-bounds

• A loop nest is considered to be "irregularly bounded", if any of its bounds are non-numerical , or if it’s unbounded and contains a branch
predicate expression for the loop termination

• A loop nest is considered to be "multi exit", if it contains multiple termination conditions, i.e it contains exiting edges in the control-flow
graph which originate from a loop basic block that neither dominates nor post-dominates the loop body

• Based on this categorization, over 55% of loop nest in modern workloads are irregular

• The distribution of loop trip counts follows a discrete, non-negative, integral distribution.

Loop Trip Count Estimation: Classification Problem

• Intuitively, each integer in this loop trip count domain can be thought of as a class/category.

• The goal here is to learn a function that can project the set of critical variables to a loop trip count value.

• This learned function extrapolates the loop trip count distribution, and thus, unlike loop-profiling, is also able to map unseen inputs
to precise loop trip counts.

• Scalability of labels is not an issue since our experiments have shown that unique trip counts exhibited by loop nest <
30

• Loop-Timing is defined as the time taken for executing an entire loop-nest. It helps us to determine how long a particular
phase will last.

Loop Timing Analysis: Regression Problem

• Theorem. For a normalized loop nest L with 𝑛 inner-nested loops with individual upper-bounds {U1, U2 , . ., U𝑛} the
timing 𝑇𝑐 is given by the linear equation:

• During runtime, the actual loop-bounds are plugged into this equation to generate the phase-time.

where are learnable parameters

is the feature vector

represents the individual feature

• The timing model results in an upper-bound on loop timing, resulting in conversative scheduling decisions

• Memory footprint determines the amount of cache that will be utilized by a loop-nest during an execution phase.

Loop Memory Footprint & Data Reuse: Polyhedral Model

• Polyhedral analysis generates memory footprint equations of the form:

• For non-affine loops, the memory footprint is enhanced with the precise loop trip count prediction.

m(X) represents the dynamic memoryaccesses

𝑁 is the loop trip count

• To determine the amount of cache required by a loop-nest for maximizing locality, Beacons Framework uses Static Reuse Distance (SRD)

Static Reuse Distance

Large SRD Small SRD

Reuse Loop Streaming Loop

For large reuse distances, large cache
resources must be allocated so that the
reused data will be found in the cache.

For small reuse distances, data which is
reused only after a couple of iterations will

be found in the cache.

• Scheduler optimally shares the Last-Level Cache (LLC) among scheduled processes by changing between the two
modes

• Reuse Mode:

• A reuse beacon for a loop will lead to a check if all current processes fit in the cache. If not, the process will be
put in waiting queue until a spots opens for it.

• A streaming beacon for a loop is suspended until no more reuse processes are active.

• When no more reuse processes or 90% of processes are streaming, we switch to streaming mode.

• Streaming Mode:

• Streaming Mode executes as many streaming processes as possible without exceeding the memory bandwidth

• When we have many reuse processes in the waiting, we switch back to reuse mode.

Proactive Scheduling: Promoting Concurrency & Minimizing Resource
Contention

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Reuse Beacon P1

P1

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Reuse Beacon P2

P1 P2

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream Beacon P3

P1 P2

P3

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream Beacon P4

P1 P2

P3

P4

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Reuse Beacon P5

P1 P2

P3

P4

P5

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Reuse Beacon P6

P1 P2

P3

P4

P5

Predicted Earliest completing Reuse Beacon = P2
Time overlap of P6 and P2 > threshold (5%)

P6

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Reuse Beacon P7

P1 P2

P3

P4

P5

Predicted Earliest completing Reuse Beacon = P2

Time overlap of P7 and P2 <= threshold (5%)

P6

P7

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Job Complete Beacon P2

P1 P2

P3

P4

P5

New Predicted Earliest completing Reuse Beacon = P1

Time overlap of P6 and P1 > threshold (5%)

P6

P7

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Reuse Beacon P8

P1

P3

P4

P5

P6

P7P8

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Job Complete Beacon P1

P1

P3

P4

P5

P6

P7P8

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Job Complete Beacon P1

P3

P4

P5

P6

P7P8P6

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream Beacon P9

P3

P4

P5 P7P8P6

P9

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Job Complete P5

P3

P4

P5 P7P8P6

P9

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream Beacon P0

P3

P4

P7P8P6

P9

Num Streaming process in Q > 90% of num CPUs

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream Beacon P0

P3

P4

P7P8P6

P9

Stream
Mode

Num Streaming process in Q > 90% of num CPUs

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream Beacon P0

Stream
Mode

P0 P3 P4 P9

P6

P7

P8

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream
Mode

P0 P3 P4 P9

P6

P7

P8

Stream Beacon P5

P5

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream
Mode

P0 P3 P4 P9

P6

P7

P8

Job Complete Beacon P3

P5

P5

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream
Mode

P0 P3 P4 P9

P6

P7

P8

Reuse Beacon P1

P5

P1

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream
Mode

P0 P3 P4 P9

P6

P7

P8

Job complete Beacon P9

P5

P1

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream
Mode

P0 P3 P4

P6

P7

P8

Job complete Beacon P4

P5

P1Enough reuse process to fill all cores

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

Stream
Mode

P0

P6

P7

P8

Job complete Beacon P4

P5

P1

Reuse
Mode

Enough reuse process to fill all cores

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

Working of The Beacon Scheduler

Reuse
Mode

Stream
Mode

LLC

CPU1

Ready Q

CPU2 CPU3 CPU4Reuse
Mode

P0

P5

P1 P7P8P6

 Executing reuse process De-scheduled reuse process Executing stream process De-scheduled stream process

Simplified State Mealy Machine of the
BES scheduler

System with Beacons Scheduler

• To predict the loop trip count for irregular loops, decision trees classifiers were utilized

Loop Trip Count Prediction: Prediction Accuracy

High prediction accuracy (>80%) in ML
workloads

Moderate prediction accuracy, but with low
absolute error

Majority (>70%) of the trip count absolute
errors lies is less than 5%

• Most Neural Network-based ML workloads can be broadly dissected into several constituent layers
(convolutional layer, fc layer, etc).

• Each of these layers performs an unique set of operations, that can be abstracted throughout different
input sets, by learning the correlation between loop trip counts and its critical variables.

• Absolute error helps us determine the extent of trip count misprediction

Loop Trip Count Prediction: Absolute Errors

Low prediction
accuracy co-

relates with low
absolute errors

• Loop timing helps us determine the extent of overlap between different loop phases

Loop Timing Prediction

Correlation
between trip

count accuracy &
timing accuracy

is observed

• Average Throughput Improvement of 2.62x over Merlin Scheduler, and 1.92x over CFS

Proactive Workload Scheduling

• Beacons Framework, an end-to-end system that estimates dynamic loop characteristics and leverages them
to solve the workload scheduling problem efficiently

Conclusion

• Devised novel analysis to estimate the following loop characteristics with over 80% prediction accuracy:

• Loop Trip Count

• Loop Timing

• Loop Memory Footprint

• Improved the throughput over CFS by 1.92x and over Merlin Scheduler by 2.62x

	Slide 1: BEACONS: An end-to-end Compiler Framework for Predicting and Utilizing Dynamic Loop Characteristics
	Slide 2: Main Contributions
	Slide 3: Resource Allocation in High-Performance Computing (HPC) Clusters
	Slide 4: Application Resource Requirement = Dynamic Loop Characteristics
	Slide 5: Beacons Framework: Compile-time & Run-time Cooperative Scheduling
	Slide 6: Tackling Irregular Loops: "Backslicing" Critical Variables
	Slide 7: Loop Categorization Scheme
	Slide 8: Loop Trip Count Estimation: Classification Problem
	Slide 9: Loop Timing Analysis: Regression Problem
	Slide 10: Loop Memory Footprint & Data Reuse: Polyhedral Model
	Slide 11: Proactive Scheduling: Promoting Concurrency & Minimizing Resource Contention
	Slide 12: Working of The Beacon Scheduler
	Slide 13: Working of The Beacon Scheduler
	Slide 14: Working of The Beacon Scheduler
	Slide 15: Working of The Beacon Scheduler
	Slide 16: Working of The Beacon Scheduler
	Slide 17: Working of The Beacon Scheduler
	Slide 18: Working of The Beacon Scheduler
	Slide 19: Working of The Beacon Scheduler
	Slide 20: Working of The Beacon Scheduler
	Slide 21: Working of The Beacon Scheduler
	Slide 22: Working of The Beacon Scheduler
	Slide 23: Working of The Beacon Scheduler
	Slide 24: Working of The Beacon Scheduler
	Slide 25: Working of The Beacon Scheduler
	Slide 26: Working of The Beacon Scheduler
	Slide 27: Working of The Beacon Scheduler
	Slide 28: Working of The Beacon Scheduler
	Slide 29: Working of The Beacon Scheduler
	Slide 30: Working of The Beacon Scheduler
	Slide 31: Working of The Beacon Scheduler
	Slide 32: Working of The Beacon Scheduler
	Slide 33: Working of The Beacon Scheduler
	Slide 34: Working of The Beacon Scheduler
	Slide 35: Working of The Beacon Scheduler
	Slide 36: Loop Trip Count Prediction: Prediction Accuracy
	Slide 37: Loop Trip Count Prediction: Absolute Errors
	Slide 38: Loop Timing Prediction
	Slide 39: Proactive Workload Scheduling
	Slide 40: Conclusion

