Com-CAS: Effective Cache
Apportioning Under Compiler
Guidance

/ Bodhisatwa Chatterjee Sharjeel Khan Santosh Pande

/e Georgia
/ =~ Tech

Shared Cache = Inter-Application Interference

// = \\

1 Applicationy) Application,
\
A

Last Level Cache

>
|

| |
i
|

Application,

\ 4
\\\ /
-

HPC Servers/Data Centers Shared Last-Level Cache (LLC) Inter-Application Interference

W HPC Servers facilitate concurrent execution by sharing resources (Caches, Memory Bandwidth,
Inter-connect) among applications.

| Sharing the Last-Level Cache (LLC) results in Inter-Application Interference, where multiple applications
map to same cache line, resulting in conflict misses.

y T N
(Application,
\

)

\

|

\ y
y

f/ Application;) Application,
\ y

Cache Partitioning = Performance Isolation

\
I I | |

Shared Cache leading to Inter-application Interference Partitioned Cache ensuring Performance Isolation

>

Last Level Cache

y \
(Applicationg |
\ y

Application,

| Application; |
Q /

. Cache Partitioning divides the LLC among the co-executing applications in the system.

. This secures dedicated regions of cache memory to high-priority cache-intensive applications, resulting in
superior application performance and enhanced system throughput.

L. It can also be leveraged to boost system utilization, improve power & energy consumption, fair resource
allocation, worst-case timing analysis, etc

How should the Last-Level Cache be partitioned?

Applicationy
(3 Cache Ways)

Last Level Cache

(3 Cache Ways)

p—
Applicatiom

(6 Cache Ways)

Applicationg
(6 Cache Ways)

Each executing application is
allocated certain cache ways
(way-partitioning)

ﬁ The amount of cache allocated to each application should satisfy individual cache requirements

ﬁ How do we determine an application’s requirements throughout its execution?

Modern Workloads = Dynamic Phase Behavior

Rapid memory footprint transitioning in footprint log scale Total execution phases and their timings are input-dependent

Case Study: Application Phases and their Memory Footprints Case Study: Application Phases and their Timings

—R‘ 111

—— bfs

'

phase changes ranges
<t— from order of few us

to 102 ms

(=] [oe]
L L

I
L

Memory Footprint (log scale)
Phase Timing (log scale)
o

N
L

Graph workloads from
GAPS Benchmark

1 2 3 4 5 6 7 8 9

Application Dyanmic Execution Phases 1 g 3 4 S o 7 5 9 10

Application Dyanmic Execution Phases

W Modern workloads exhibit ‘dynamic phase behaviour’ due to which their cache requirements rapidly
changes throughout their execution cycle

. These behaviours result from input dependencies, complex control flows, diverse memory referencing
behaviours present in the application

. Even a single program region (such as a loop) can exhibit different behaviours upon different invocations.

Cache Partitioning Systems = Oblivious to Phase Behaviour

Injudicious cache
partitioning leads to

performance
degradation

Cache Partitioning Techniques This is our approach

Workload Characterization Hardware Monitors-based Apportioning Compiler-Driven Apportioning
k’j Distinguishes cache sensitive u Dynamically adjusts cache u Accounts for applications’ dynamic
workloads (via profiling) partitions during the execution phase behaviours
X Relies on past behaviour to predict X suffers from Detection and 4 Allows anticipating phase changes
future cache requirements Reaction Lag just-in-time (Proactive)
x Does not consider input sensitivity x Solely relies on aggregate metrics u Leverages program attributes like
like IPC, Cache Misses, etc Reuse Behaviour, Footprints, Timing, etc

X Doesn’t account for the fact that a ‘
single application can exhibit dual cache x Often requires apriori knowledge u Can adapt the apportioning decisions
behaviour of mix composition at a few ms granularity

Compiler-Guided Cache Apportioning System (Com-CAS)

Lo Applications’ cache requirements are estimated just-in-time, through a combination of static & dynamic
program attributes, by leveraging compiler analysis & machine learning.

Application Probes-Instrumented Application Application Runtime LLC Partitioning
~ {—> | cache Demand

Loop Nest1

Loop Nest .

~_ p Nest, Runtime ComponenD :> -
Loop Nest Probe {~—>| Cache Demand

. flecpleny| o, (SR El

Loop Nest Loop Nest,
o k Cache is dynamically partitioned

<:> Cache Demand
Loop Nestn

Loop Nestk
The application consists of loop nests
{——> | Cache Demand
Loop Nest
P n Cache demand is broadcasted at runtime

L. Probes are specialized library markers, which encapsulate the cache requirements, and are statically
instrumented in the application (Static Generation).

L.« These probes broadcast the cache requirements during runtime, which helps scheduler to make partitioning
decisions (Dynamic Instantiation).

Compiler-Guided Cache Apportioning System (Com-CAS)

L.« Applications’ cache requirements are estimated just-in-time, through a combination of static & dynamic
program attributes, by leveraging compiler analysis & machine learning.

Application(s) Probes-Instrumented Application(s) Application Runtime LLC Partitioning

L () — e

~_ Loop Nest, Loop Nest,

Probe Cache Demand
o, > (e, ¢

Runtime Component :> -
I

Application, Loop Nest,
~ User-Level Cache is dynamically partitioned
Pa— Scheduler
Loop Nest Probe, Cache Demand
T~ k |:> This allows us to
Loop Nest Loop NeStk Scheduler aggregates the probes make system
n information across all applications wide decision
Application Rrobe] (> _cache Demand making
2
The applications consists of loop nests Loop Nestn Cache demand is broadcasted at runtime

L. Probes are specialized library markers, which encapsulate the cache requirements, and are statically
instrumented in the application (Static Generation).

L.« These probes broadcast the cache requirements during runtime, which helps scheduler to make partitioning
decisions (Dynamic Instantiation).

Quantifying Cache Requirements

.. Probes estimates program attributes that dictate an application’s cache requirements.

Cache sensitivity determines the “most beneficial application”
Cache ways demanded by application y PP

N
4 N

Application, / £ \

EEEE
EEEER

Last Level Cache

Application 8

Cache Footprint
D Reuse Behaviour
- Phase Timing
Cache Sensitivity

Phase timing determines the how long a particular phase is going to last

n These four program attributes (cache footprint, reuse behaviour, phase timing, cache sensitivity) are
expressed as closed-form expressions, and are computed via compiler analysis coupled with learning algorithms

Com-CAS : Smart and Proactive Cache Partitioning

W Compile-time and Runtime Cooperative Cache Partitioning System. It consists of front-end and back-end.

Loop Simplification

Canonicalize
natural loops

Loop Normalization

Unit Stride
Loops

Probes Compiler Framework

Polyhedral Memory

Analysis

Categorizat

on

A

Static Loop Analysis

Estimate

Memory Footprint
Loop

BCache Allocation Framework

Smart Cache Apportioning

A

Regression Learning Sensitivity
Model Analyzer
Predict loop
timings
Training Test
Data Data Loop

Cache
Profile

Intel CAT Library

CBM
Estimator

Proactive
Scheduler

Static (Compile-Time) Component

Dynamic (Run-time) Component

.- Probes Compiler Framework represents Com-CAS’s frontend. It is responsible for estimating the program attributes
and encapsulating them, and instrumenting the probes in the application.

.- BCache Allocation Framework represents Com-CAS’s backend. It consists of phase-aware cache allocation

algorithms, and a proactive workload scheduler that aggregate probes information and determines LLC partitions.

L Intel CAT is leveraged to perform the actual cache partitions - the scheduler interacts with it via customized library.

Probes Compiler Framework : Predicting Phase Timing

E Loop-Timing is defined as the time taken for executing an entire loop-nest. It helps us to determine how long a
particular phase will last.

E Theorem. For a normalized loop nest L with n inner-nested loops with individual upper-bounds {U1, U2). Un} the
timing 7' is given by the linear equation:

T.=UTC = ¢y + ciuy + coug + ... + cuin
where (' = {CO, C1, --Cn} are learnable parameters
U= {an Ugy - Un} is the feature vector

)
U; = Hk::l Uk represents the individual feature

. During runtime, the actual loop-bounds are plugged into this equation to generate the phase-time.

Probes Compiler Framework : Estimating Memory Footprint

ﬁ Memory footprint determines the amount of cache that will be utilized by a loop-nest during an execution phase.

. Polyhedral analysis generates memory footprint equations of the form:

[X] — {m(X):0< X < N}

m(X) represents the dynamic memory accesses
N is the expected iterations of the loop nest

ﬁ For non-affine loops, the memory footprints and timings are taken as an average on the training input sets.
ﬁ We found that this works quite well in practice, as Com-CAS works on aggregate cache requirements of all the

co-executing processes in the system. Thus, approximate values for footprints and timings are sufficient for
determining system-wide cache-apportions.

Probes Compiler Framework : Classifying Data Reuse

W To determine the amount of cache required by a loop-nest for maximizing locality, we need to obtain a sense of
reuse behaviour exhibited by the loop-nest.

.. To classify reuse behaviour, Probes Framework uses Static Reuse Distance (SRD).

Static Reuse Distance (SRD)

Large SRD Small SRD

A

Reuse Loop [Streaming Loop }

.. For large reuse distances, large cache resources must be allocated so that the reused data will be found in the
cache. For small reuse distances, data which is reused only after a couple of iterations will be found in the cache.

Probes Compiler Framework : Accounting Cache Sensitivity

.- Com-CAS accounts for cache-sensitivity by defining performance sensitivity factor () and max-ways for entire
application.

Measure of change in application’s execution time as a [Accounting Cache Sensitivity] Denotes the maximum cache ways that can be

function of cache ways allocated /\ allocated over all the phases

‘[Performance Sensitivity Factor (@) } [Max-Ways (Wmax) }
High a Low a [Performance Saturation]
[Cache Sensitive Application } [Cache Insensitive Application }

E These metrics are application-wide, and are simply meant to guide the apportioning decisions.

BCache Allocation Framework : Cache Apportioning Scheme

@ Goal is to obtain efficient cache partitions for diverse application mixes, based on their execution phases.

@ An application executing a reuse loop with a higher value of memory footprint should be allocated a
greater portion (isolated) of the LLC, compared to another application executing a streaming loop.

[Cache Apportioning Scheme }

\4

N Limit Total Processes in an
Maintain Data-locality Find Compatible Application Group .
Application Group
Confine applications to a single socket Group applications by similar way-demand and Total Processes can be limited by adjustable parameter

)

minimal overlap (At
max

.- BCache Framework uses an unit-based fractional cache apportioning scheme - each application will be allocated a
fraction of the LLC, which is measured by estimating how much they contribute to the entire memory footprint.

BCache Allocation Framework : Phase-Aware Cache Allocation

.- Applications are first grouped into different sockets based on their a-values.

ﬁ A compatible CLOS (group) is selected based on nature of loop (reuse - minimal overlap/ stream - grouping)

Application,
demand = 6 ways
a =10

Application2
demand = 2 ways
a=0.5

Processor Socket 1 (Last-Level Cache - 21 ways)

Maximize Isolation

~/

Processor Socket 2 (Last-Level Cache - 21 ways)

Maximize Concurrency

BCache Allocation Framework : Phase-Aware Cache Allocation

@ Applications are first grouped into different sockets based on their a-values.

@ A compatible CLOS (group) is selected based on nature of loop (reuse - minimal overlap/ stream - grouping)

Application3
demand = 6 ways
a=20

Application .
demand = 7 ways
a =50

Processor Socket 1 (Last-Level Cache - 21 ways)

Maximize Isolation

Application,
demand = 3 ways
a =05

phase change - demand
is now 3 cache ways

3 =/

Processor Socket 2 (Last-Level Cache - 21 ways)

Maximize Concurrency

BCache Allocation Framework : Phase-Aware Cache Allocation

ﬂ Applications are first grouped into different sockets based on their a-values.

n A compatible CLOS (group) is selected based on nature of loop (reuse - minimal overlap/ stream - grouping)

Sharing of high-a reuse loops is now inevitable

|

Share ways with minimum overlap (At_)

\ /

................... H
lllllll

Processor Socket 1 (Last-Level Cache - 21 ways) Processor Socket 2 (Last-Level Cache - 21 ways)

Application6
demand = 2 ways
a=0.2

Application,
demand = 2 ways
a=0.1

Maximize Isolation Maximize Concurrency

Com-CAS: Experimental Evaluation

.. Com-CAS was evaluated with 45 application mixes from GABPS’, Polybench?, Rodinia®, and SPEC 2017*

.- Four different baselines were used to evaluate Com-CAS’s performance:

Partition Scheme Policy Type Interval Throughput
Improvement
(Average)
Unpartitioned Cache NA NA 15% speedup
Com-CAS'’s performance
Max-Ways Partitioning Static NA 21% speedup T improvement compared to
each baseline
HW Performance Counter Dynamic 250 ms 32% speedup
Kpart® Dynamic 206 cycles 20% speedup

ﬁ Experiments on Dell PowerEdge R440 server with Intel Xeon Gold 5117 processors with Intel CAT, 28 cores, 11-way
set-associative, 19 MB shared LLC, running Ubuntu 18.04

[1] http://gap.cs.berkeley.edu/benchmark.html [2] https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
[5] [3] https://www.cs.virginia.edu/rodinia/doku.php [4] https://www.spec.org/cpu2017/

https://www.csail.mit.edu/research/kpart-novel-technique-partitioning-shared-caches

http://gap.cs.berkeley.edu/benchmark.html
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.cs.virginia.edu/rodinia/doku.php
https://www.spec.org/cpu2017/
https://www.csail.mit.edu/research/kpart-novel-technique-partitioning-shared-caches

Com-CAS: Throughput Enhancement for Unpartitioned Cache

Weighted Speedup Unpartitioned Cache (%)

L. The largest performance gains are in heavy-mixes, where the workload resource requirement saturates the
system and judiciously partitioning the cache is highly contingent upon utilizing dynamic phase attributes.

Weighted Speedup (Geo Mean) across all Polybench Mixes Weighted Speedup (Geo Mean) across all GAP Mixes Weighted Speedup (Geo Mean) across all Rodinia Mixes

354 mmm Polybench & 124 = GAPBS g = Rodinia
2 I

30 A 5 10 §
o o 251
d) @

251 S gl s
B 2 201

20 3 3
< 6 c]
=} 215

B = =

101 g * g 101
2l w
o o

51 £ 2 £ 57
2 =
Q Q

0 e g 0 B g 0 e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 34 35
Mix # Mix # Mix #

The average performance improvement over all the mixes were 15%

ﬂ Com-CAS achieves effective cache allocation and superior scheduling particularly when the workload resource
demands are saturated and it prevents overwhelming of the system.

Com-CAS: Throughput Enhancement versus KPart

n Kpart® groups applications in distinctive clusters by checking the reduction in combined cache miss among
applications by profiling. It periodically updates them periodically per 20° cycles of instructions.

Weighted Speedup (Geo Mean) across all Polybench Mixes

s Polybench

N w B
o o o
L L

=
o
N

Weighted Speedup KPart (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Mix #

Weighted Speedup KPart (%)

17.51

Weighted Speedup (Geo Mean) across all GAP Mixes

Weighted Speedup (Geo Mean) across all Rodinia Mixes

. GAPBS

Mix #

s Rodinia

w w
o (]
L L

N
v
L

-
v
'

Weighted Speedup KPart (%)
= N
o o

[E]
L

=]
'

Mix #

J

~

The average performance improvement over all the mixes were 20%. Performance gap arises due to KPart’s non-adaptability of to the varied phase timings and

footprints

u KPart essentially treats each application like a ‘black-box’ and attempts to find ‘best cluster fit’ for a certain
application mix, while Com-CAS is assisted by a compiler framework that analyzes each application at loop nest

granularity.

[5]

httos://www.csail mit edu/research/kpart-novel-techniaue-nartitionine-shared-caches

https://www.csail.mit.edu/research/kpart-novel-technique-partitioning-shared-caches

Com-CAS: Cache-Misses, Fairness and Individual Latencies

. For Cache Misses, the general trend is that the reduction in LLC cache misses are shifted towards reuse-based
applications that “need a greater amount of cache".

Fairness Comparision of Different Policies Fairness Comparision of Different Policies
1.00 4 1.0
0.99 A
0.8
0.98 -
3 3
ﬁ 0.97 A 206
o a
/ g 0.96 E
£ = 0.4
£ 005 £
) —— Max-Ways I Max-Ways
Com-CAS’s Fairness Index is close t0 1 004 — pert.counter 02 — e All processes show minimum
— P - KPart p
0931 — Com-CAS - — Gl execution latency degradation
: T T y ’ <5 =10 <15 >15
1 1
4 8 Numbser p Procegses i M::: 13 6 Mix Average Performance Sensitivity Factor (ayg/mix)
Process Execution times for Best Performing Polybench Mix (M) Process Execution times for Best Performing Rodinia Mix (M37) 6 Process Execution times for Best Performing GAP Mix (M;s)
i p 5
E 20 = Polybench s Rodinia
= 20 @ -2
£ 20 g £
2 = =
<]] T 4
¥ c
g 101 S 101 ®
g S S 6
9 | 4 5
2 -10 s =
Lz =] 3 -10
> FREFE L L E L L % 101 g
F §85 S8 8 X5 £ g &
5 §F5 & & 5 o 22 E L b -12
s £3 = GAPBS
L Backpop Srad CFD i BCy BC, cC, cc, SSSPy SSSPy
Processes Processes Processes

Individual process latencies with original-unmixed time in representative mixes from each benchmark (#10, #25, #27).

Lee Com-CAS: Compiler-Guided Cache Apportioning System
A Effective apportioning of the shared LLC leveraging Intel CAT
A Probes Compiler Framework evaluates cache-attributes such as reuse behaviour, cache footprints, loop

timings and cache sensitivity and relays them.
A BCache Allocation Framework uses allocation algorithms to dynamically partitions the cache and

schedules processes

e Com-CAS improved average throughput by 15% on unpartitioned cache system, and 20% on state-of-art KPart

L« With improved throughput, minimal latency degradation, and reduced process interference, we contend that
the proposed Com-CAS is a viable system for multi-tenant setting

L« Intel Cache Allocation Technology (CAT) is a part of Intel Resource Director Technology (RDT)
L. Goal is to provide extended control/visibility over shared resources to users

L« Intel CAT is a reconfigurable implementation of hardware way partitioning - it lets the user to specify custom
cache partitioning configurations to different applications

L« Cache usage of any application can be adjusted via CLOS and Capacity Bitmasks (CMBs)
[Class of Service (CLOS): Applications in the same CLOS share the same partition

[Capacity Bitmasks (CBM): The exact number of ways is specified through n-dimensional bitvector

L.« Additional Hardware Components and some minor changes are done in Linux Kernel to support Intel CAT

BACKUP SLIDES : Com-CAS’s Extension to Other Hardwares

.. Com-CAS relies on Intel CAT to perform the actual cache partitioning.

.- The Probes Compiler Framework (& its compiler analysis), BCache Allocation Framework (& its apportioning
scheme and algorithms) are independent of the underlying architecture.

- The library interface that interacts between the proactive scheduler and Intel CAT is architecture-dependent, and
is the only component that requires re-engineering for other architectures.

.- Some ARM architecture also supports reconfigurable cache partitioning®.

https://developer.arm.com/documentation/100453/0300/functional-description/l3-cache/l3-cache-partitioning

BACKUP SLIDES: Com-CAS Overheads

.- The Com-CAS Framework has the following sources of runtime overheads:

A Short probe-library calls during information broadcast that are in range of 10 us (less than 1%

overheads)
A Training the regression models that adds ~ 120 secs, and embedding adds ~ 250 secs to compilation
time.

. Linear models were chosen to minimize overheads.

. Probe calls are hoisted to outer-most loop’s pre-header to avoid the scheduler getting overwhelmed by
excessive calls.

