
Formalization of Automated Trading Systems in
Concurrent Linear Framework (CLF)

Iliano Cervesato, Sharjeel Khan, Giselle Reis, Dragisa Zunic

Carnegie Mellon University

Linearity & TLLA 2018

Automated
Trading

Systems (ATS)

A system with rules for trading
securities like stocks or bonds that
are executed automatically by a
computer.

Examples:

● Public Stock Markets (Nasdaq,
NYSE)

● Private Exchanges (Dark pools)

- Investopedia

How it works

Order queue

"Form ATS is designed to enable the Commission to
determine whether an alternative trading system
subject to Regulation ATS is in compliance with
Regulation ATS and other federal securities laws."

Automated Trading System
Implementation

Violations are expensive

M
ill

io
ns

 o
f d

ol
la

rs

Examples of Properties
● Exchanges occur at the highest of buy (bid) or lowest of sell (ask) prices [1]
● No locked/crossed market: The bid price (maximum buy price) is strictly

less than the ask price (minimum sell price)
● Price-time priority satisfied: Orders are exchanged first based on price then

based on time the order entered the market
● Order priority is transitive

[1] Code of Federal Regulations, Title 17, Chapter II, Part 242, Section 242.301, paragraph (b)(3)(iii)(B)
https://www.law.cornell.edu/cfr/text/17/242.301

https://www.law.cornell.edu/cfr/text/17/242.301

● Hard to reason about the exchange rules when described in natural language
● Properties may be violated because an unforeseen combination of rules

reaches a violating state

Motivation

Can we leverage formal methods to provide better
guarantees?

GOAL
 Formalize the rules of an archetypal ATS and
provide formal proofs for desired properties.

Concurrent Logical Framework (CLF)
Specification of object systems as a set of terms (types) in a fragment of
(intuitionistic) linear logic1:

1 This is the fragment needed for this work, not the full CLF.

N, M ⩴ a ⊸ N | a → N | {P} | ∀x.N | a (Negative)
P, Q ⩴ P ⊗ Q | 1 | !a | a (Positive)

● Positive formulas are encapsulated in a monad {} (focusing)
● Specifications are executable
● Context (of linear facts) represents the state of the world

Concurrent Logical Framework (CLF)
Linear implication (⊸) is multiset rewriting (rewrites part of the context)

Intuitionistic implication (→) is the typical backward chaining:

r: coffee ⊗ milk ⊸ {latte}.

Concurrency can be modelled via ⊗

fork: proc (par P Q) ⊸ { proc P ⊗ proc Q }.

plus/s: plus M N P → plus (s M) N (s P).

Formalization: main elements

order*

* Not facts per se.

bid* ask*

Formalization: main elements

orderQ actPrices

priceQ

order*

* Not facts per se.

bid* ask*

Formalization: rule

orderQ(front((limit,A,P,ID,N,T),Q)) ⊗
dual(A,A’) ⊗
actPrices(A’,LP) ⊗
store(A,LP,P) ⊗
priceQ(A,P,L) ⊗
extendP(L,ID,N,T,L’)

"A limit order is an order to buy or sell a stock at a specific price or better. A buy limit order can only be
executed at the limit price or lower, and a sell limit order can only be executed at the limit price or

higher."

⊸ {priceQ(A’,P,L’) ⊗ actPrices(A’,LP) ⊗ orderQ(Q)}.

No exchange can take place

New facts

+ rules for exchanging

Formalization: in numbers
● Three exchange order types: limit, market, and immediate-or-cancel
● Cancel orders
● ~25 exchange rules in total
● Infrastructure (lists, nats, queues): ~250 lines of code*
● Actual ATS: ~450 loc*

* With comments and empty lines.

● Ongoing work
● Requires reasoning on states (contexts) and execution traces
● Current proposal: generative grammars

Reasoning about CLF specifications

σ
 Δ Δ'

 ε ε'
gen gen

gen is the start symbol of a
grammar that only generates

context which satisfy the
desired property

σ is one step in the
execution of the CLF

specification

ε and ε' are derivations in
the grammar

No locked/crossed market

Property: The bid price (maximum buy price) is strictly less than the ask price
(minimum sell price).

Theorem: For every reachable state, if actPrices(buy, LB),
actPrices(sell, LS), maxP(LB, B), and minP(LS,S) then B < S.

No locked/crossed market
Generating contexts satisfying the properties:

gen/00 : gen ⊸ {actPrices(buy, nil) ⊗ actPrices(sell, nil)}.

gen/01 : gen ⊗ (LB ≠ nil) ⊸ {actPrices(buy, LB) ⊗ actPrices(sell, nil)}.

gen/10 : gen ⊸ {actPrices(buy, nil) ⊗ actPrices(sell, LS)}.

gen/11 : gen ⊗ (LB ≠ nil) ⊗ (LS ≠ nil) ⊗ maxP(LB, B) ⊗ minP(LS,S) ⊗ B < S ⊸
 {actPrices(buy, LB) ⊗ actPrices(buy, LS)}.

CLF type:

Proof (Case: the order is not exchanged, A is buy, A' is sell)

limit/store :
 orderQ(front((limit,A,P,ID,N,T),Q)) ⊗
 dual(A,A’) ⊗
 actPrices(A’,LP) ⊗
 store(A,LP,P) ⊗
 priceQ(A,P,L) ⊗
 extendP(L,ID,N,T,L’)
 ⊸ {priceQ(A’,P,L’) ⊗ actPrices(A’,LP) ⊗ orderQ(Q)}.

limit/store

{actPrices(buy,LB),
actPrices(sell,LP)}

{actPrices(buy,LB),
actPrices(sell,LP)}

gen/11

gen/11

gen gen

Proof (Case: the order is exchanged, A is buy, A' is sell)

limit/1:
 orderQ(front((limit,A,P,ID,N,T),Q)) ⊗
 dual(A,A') ⊗
 actPrices(A',L') ⊗
 exchange(A,L',P,X) ⊗
 priceQ(A',X,consP(ID',N,T',nilP)) ⊗
 remove(L',X,L'')
 ⊸ {orderQ(Q) ⊗ actPrices(A',L'')}

limit/1

{actPrices(buy,LB),
actPrices(sell,L')}

{actPrices(buy,LB),
actPrices(sell,L'')}

gen/11

gen/11

gen gen

Conclusion
● (Modular) executable specification of archetypal orders
● Proofs using the generative grammar method:

○ No locked/crossed market
○ Exchange price is always bid or ask

● More generally: we should use more formalizations and less natural language
for regulated systems (but here this is preaching to the choir).

● Development of a meta-logic for automating proofs
● Extend specification to more complicated exchange systems
● Prove more properties

Future Work

Thank you!

